Latest Online Medical Education News

New York to Offer Online Medical Marijuana Training for Doctors
Online … medical marijuana across state lines is still illegal at the federal level. The course costs $ 249, reports Tracy Drury of Buffalo Business First, and those who complete it will receive 4.5 credit hours of continuing medical education (CME).
Read more on Education News

ACLS Online Course Manuals Are Now Available at No Cost Through United Medical Education
New York, NY — (SBWIRE) — 05/16/2013 — United Medical Education, a company that provides online certification for Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS) and Basic Life Support (BLS), is now offering free PALS, BLS …
Read more on sbwire.com

Massive Open Online Courses on Health and Medicine: Review
Conclusions: The review presents evidence to suggest that MOOCs can be used as a way to provide continuous medical education. It also shows the potential of MOOCs as a means of increasing health literacy among the public. Massive open online courses (MOOCs …
Read more on jmir.org

Global Learning Management Systems (LMS) Market Industry Size, Growth, Competitors, Application, Segmentation and Forecast to 2021

Global Learning Management Systems (LMS) Market Industry Size, Growth, Competitors, Application, Segmentation and Forecast to 2021
She was an immigrant, a mother and a wife. But most importantly, she was an innocent bystander in Central City when gunfire erupted from a black sedan near her home. She was an immigrant, a mother and a wife. But most importantly, she was an innocent …
Read more on Fox 8 WVUE-TV

Understanding learning management systems
– [Voiceover] One of the most important factors…in determining the success of your online course…will be the platform which you deliver it on.…It’s possible to create a course…and share course resources, assignments,…updates, feedback and more …
Read more on www.lynda.com

Latest Atlassian Confluence News

Swiftype Launches AI-Powered Content Discovery Engine For Enterprise Users
To make the user experience truly seamless, Swiftype also integrates directly into apps like Salesforce, Confluence, and others to allow … Microsoft, Salesforce, Atlassian, Zendesk, and more. The Enterprise Knowledge Graph, Swiftype’s artificial …
Read more on Financial Content

Latest Information Communication Technology News

Information Theory Reveals Size of Whale and Dolphin Communication Repertoires
That discovery had a profound effect on biologists who were hugely curious about the information content of animal communication. Since then, many groups have recorded various types of animal communication and calculated its information content.
Read more on MIT Technology Review

India ranked world’s top exporter of information, communication technology
India has been ranked the world’s top exporter of information and communication technology in a UN agency report that recommended that the country leverage this lead to innovate in emerging areas where biology and materials sciences intersect with computing.
Read more on The Indian Express

Understanding Your Electronic Medical Records

Understanding Your Electronic Medical Records
The days when doctors riffled through a folder bulging with papers to find crucial information about a patient’s medical history are disappearing. Today, health care providers at many physician practices, hospitals and health systems across America rely on …
Read more on Yahoo News

Electronic Health Records May Help Customize Medical Treatments
Chances are your doctor has stopped taking notes with pen and paper and moved to computer records. That is supposed to help coordinate your care. Increasingly, researchers are also exploring these computerized records for medical studies and gleaning facts …
Read more on wshu.org

6 top content management systems compared

Old Jaguar E-type sports car: hubcap sprocket text “UNDO –> RIGHT (OFF) SIDE”
content management systems
Image by Chris Devers
Quoting from Wikipedia: Jaguar E-Type:

• • • • •

The Jaguar E-Type (UK) or XK-E (US) is a British automobile manufactured by Jaguar between 1961 and 1974. Its combination of good looks, high performance, and competitive pricing established the marque as an icon of 1960s motoring. A great success for Jaguar, over seventy thousand E-Types were sold during its lifespan.

In March 2008, the Jaguar E-Type ranked first in Daily Telegraph list of the "100 most beautiful cars" of all time.[2] In 2004, Sports Car International magazine placed the E-Type at number one on their list of Top Sports Cars of the 1960s.

Contents

1 Overview
2 Concept versions
•• 2.1 E1A (1957)
•• 2.2 E2A (1960)
3 Production versions
•• 3.1 Series 1 (1961-1968)
•• 3.2 Series 2 (1969-1971)
•• 3.3 Series 3 (1971-1975)
4 Limited edtions
•• 4.1 Low Drag Coupé (1962)
•• 4.2 Lightweight E-Type (1963-1964)
5 Motor Sport
6 See also
7 References
8 External links

Overview

The E-Type was initially designed and shown to the public as a grand tourer in two-seater coupé form (FHC or Fixed Head Coupé) and as convertible (OTS or Open Two Seater). The 2+2 version with a lengthened wheelbase was released several years later.

On its release Enzo Ferrari called it "The most beautiful car ever made".

The model was made in three distinct versions which are now generally referred to as "Series 1", "Series 2" and "Series 3". A transitional series between Series 1 and Series 2 is known unofficially as "Series 1½".

In addition, several limited-edition variants were produced:

• The "’Lightweight’ E-Type" which was apparently intended as a sort of follow-up to the D-Type. Jaguar planned to produce 18 units but ultimately only a dozen were reportedly built. Of those, one is known to have been destroyed and two others have been converted to coupé form. These are exceedingly rare and sought after by collectors.
• The "Low Drag Coupé" was a one-off technical exercise which was ultimately sold to a Jaguar racing driver. It is presently believed to be part of the private collection of the current Viscount Cowdray.

Concept versions

E1A (1957)

After their success at LeMans 24 hr through the 1950s Jaguars defunct racing department were given the brief to use D-Type style construction to build a road going sports car, replacing the XK150.

It is suspected that the first prototype (E1A) was given the code based on: (E): The proposed production name E-Type (1): First Prototype (A): Aluminium construction (Production models used steel bodies)

The car featured a monocoque design, Jaguar’s fully independent rear suspension and the well proved "XK" engine.

The car was used solely for factory testings and was never formally released to the public. The car was eventually scrapped by the factory

E2A (1960)

Jaguar’s second E-Type concept was E2A which unlike E1A was constructed from a steel chassis and used a aluminium body. This car was completed as a race car as it was thought by Jaguar at the time it would provide a better testing ground.

E2A used a 3 litre version of the XK engine with a Lucas fuel injection system.

After retiring from the LeMans 24 hr the car was shipped to America to be used for racing by Jaguar privateer Briggs Cunningham.

In 1961 the car returned to Jaguar in England to be used as a testing mule.

Ownership of E2A passed to Roger Woodley (Jaguars customer competition car manager) who took possession on the basis the car not be used for racing. E2A had been scheduled to be scrapped.

Roger’s wife Penny Griffiths owned E2A until 2008 when it was offered for sale at Bonham’s Quail Auction. Sale price was US.5 million

Production versions

Series 1 (1961-1968)

Series I

• Production
1961–1968[3] [4]

Body style(s)
2-door coupe
2-door 2+2 coupe
2-door convertible

Engine(s)
3.8 L XK I6
4.2 L XK I6

Wheelbase
96.0 in (2438 mm) (FHC / OTS)
105.0 in (2667 mm) (2+2) [5]

• Length
175.3125 in (4453 mm) (FHC / OTS)
184.4375 in (4685 mm) (2+2) [5]

• Width
65.25 in (1657 mm) (all) [5]

• Height
48.125 in (1222 mm) (FHC)
50.125 in (1273 mm) (2+2)
46.5 in (1181 mm) (OTS)[5]

Curb weight
2,900 lb (1,315 kg) (FHC)
2,770 lb (1,256 kg) (OTS)
3,090 lb (1,402 kg) (2+2) [6]

• Fuel capacity
63.64 L (16.8 US gal; 14.0 imp gal)[5]

The Series 1 was introduced, initially for export only, in March 1961. The domestic market launch came four months later in July 1961.[7] The cars at this time used the triple SU carburetted 3.8 litre 6-cylinder Jaguar XK6 engine from the XK150S. The first 500 cars built had flat floors and external hood (bonnet) latches. These cars are rare and more valuable. After that, the floors were dished to provide more leg room and the twin hood latches moved to inside the car. The 3.8 litre engine was increased to 4.2 litres in October 1964.[7]

All E-Types featured independent coil spring rear suspension with torsion bar front ends, and four wheel disc brakes, in-board at the rear, all were power-assisted. Jaguar was one of the first auto manufacturers to equip cars with disc brakes as standard from the XK150 in 1958. The Series 1 can be recognised by glass covered headlights (up to 1967), small "mouth" opening at the front, signal lights and tail-lights above bumpers and exhaust tips under the licence plate in the rear.

3.8 litre cars have leather-upholstered bucket seats, an aluminium-trimmed centre instrument panel and console (changed to vinyl and leather in 1963), and a Moss 4-speed gearbox that lacks synchromesh for 1st gear ("Moss box"). 4.2 litre cars have more comfortable seats, improved brakes and electrical systems, and an all-synchromesh 4-speed gearbox. 4.2 litre cars also have a badge on the boot proclaiming "Jaguar 4.2 Litre E-Type" (3.8 cars have a simple "Jaguar" badge). Optional extras included chrome spoked wheels and a detachable hard top for the OTS.

An original E-Type hard top is very rare, and finding one intact with all the chrome, not to mention original paint in decent condition, is rather difficult. For those who want a hardtop and aren’t fussy over whether or not it is an original from Jaguar, several third parties have recreated the hardtop to almost exact specifications. The cost ranges anywhere from double to triple the cost of a canvas/vinyl soft top.

A 2+2 version of the coupé was added in 1966. The 2+2 offered the option of an automatic transmission. The body is 9 in (229 mm) longer and the roof angles are different with a more vertical windscreen. The roadster remained a strict two-seater.

There was a transitional series of cars built in 1967-68, unofficially called "Series 1½", which are externally similar to Series 1 cars. Due to American pressure the new features were open headlights, different switches, and some de-tuning (with a downgrade of twin Zenith-Stromberg carbs from the original triple SU carbs) for US models. Some Series 1½ cars also have twin cooling fans and adjustable seat backs. Series 2 features were gradually introduced into the Series 1, creating the unofficial Series 1½ cars, but always with the Series 1 body style.

Less widely known, there was also right at the end of Series 1 production and prior to the transitional "Series 1½" referred to above, a very small number of Series 1 cars produced with open headlights.[8] These are sometimes referred to as "Series 1¼" cars.[9] Production dates on these machines vary but in right hand drive form production has been verified as late as March 1968.[10] It is thought that the low number of these cars produced relative to the other Series make them amongst the rarest of all production E Types.

An open 3.8 litre car, actually the first such production car to be completed, was tested by the British magazine The Motor in 1961 and had a top speed of 149.1 mph (240.0 km/h) and could accelerate from 0-60 mph (97 km/h) in 7.1 seconds. A fuel consumption of 21.3 miles per imperial gallon (13.3 L/100 km; 17.7 mpg-US) was recorded. The test car cost £2097 including taxes.[11]

Production numbers from Graham[12]:

• 15,490 3.8s
• 17,320 4.2s
• 10,930 2+2s

Production numbers from xkedata.com[13]: [omitted — Flickr doesn’t allow tables]

Series 2 (1969-1971)

Series II

• Production
1969–1971[3] [4]

Body style(s)
2-door coupe
2-door 2+2 coupe
2-door convertible

Engine(s)
4.2 L XK I6

Curb weight
3,018 lb (1,369 kg) (FHC)
2,750 lb (1,247 kg) (OTS)
3,090 lb (1,402 kg) (2+2) [6]

Open headlights without glass covers, a wrap-around rear bumper, re-positioned and larger front indicators and taillights below the bumpers, better cooling aided by an enlarged "mouth" and twin electric fans, and uprated brakes are hallmarks of Series 2 cars. De-tuned in US, but still with triple SUs in the UK, the engine is easily identified visually by the change from smooth polished cam covers to a more industrial ‘ribbed’ appearance. Late Series 1½ cars also had ribbed cam covers. The interior and dashboard were also redesigned, with rocker switches that met U.S health and safety regulations being substituted for toggle switches. The dashboard switches also lost their symmetrical layout. New seats were fitted, which purists claim lacked the style of the originals but were certainly more comfortable. Air conditioning and power steering were available as factory options.

Production according to Graham[12] is 13,490 of all types.

Series 2 production numbers from xkedata.com[13]: [omitted — Flickr doesn’t allow tables]

Official delivery numbers by market and year are listed in Porter[3] but no summary totals are given.

Series 3 (1971-1975)

Series III

• Production
1971–1975

Body style(s)
2-door 2+2 coupe
2-door convertible

Engine(s)
5.3 L Jaguar V12

Wheelbase
105 in (2667 mm) (both)[6]

• Length
184.4 in (4684 mm) (2+2)
184.5 in (4686 mm) (OTS)[6]

• Width
66.0 in (1676 mm) (2+2)
66.1 in (1679 mm) (OTS)[6]

• Height
48.9 in (1242 mm) (2+2)
48.1 in (1222 mm) (OTS)[6]

Curb weight
3,361 lb (1,525 kg) (2+2)
3,380 lb (1,533 kg) (OTS)[6]

• Fuel capacity
82 L (21.7 US gal; 18.0 imp gal)[14]

A new 5.3 L 12-cylinder Jaguar V12 engine was introduced, with uprated brakes and standard power steering. The short wheelbase FHC body style was discontinued and the V12 was available only as a convertible and 2+2 coupé. The convertible used the longer-wheelbase 2+2 floorplan. It is easily identifiable by the large cross-slatted front grille, flared wheel arches and a badge on the rear that proclaims it to be a V12. There were also a very limited number of 4.2 litre six-cylinder Series 3 E-Types built. These were featured in the initial sales literature. It is believed these are the rarest of all E-Types of any remaining.

In 2008 a British classic car enthusiast assembled what is surely the last ever E-Type from parts bought from the end-of-production surplus in 1974.[15]

Graham[12] lists production at 15,290.

Series 3 production numbers from xkedata.com[13]: [omitted — Flickr doesn’t allow tables]

Limited edtions

Two limited production E-Type variants were made as test beds, the Low Drag Coupe and Lightweight E-Type, both of which were raced:

Low Drag Coupé (1962)

Shortly after the introduction of the E-Type, Jaguar management wanted to investigate the possibility of building a car more in the spirit of the D-Type racer from which elements of the E-Type’s styling and design were derived. One car was built to test the concept designed as a coupé as its monocoque design could only be made rigid enough for racing by using the "stressed skin" principle. Previous Jaguar racers were built as open-top cars because they were based on ladder frame designs with independent chassis and bodies. Unlike the steel production E-Types the LDC used lightweight aluminium. Sayer retained the original tub with lighter outer panels riveted and glued to it. The front steel sub frame remained intact, the windshield was given a more pronounced slope and the rear hatch welded shut. Rear brake cooling ducts appeared next to the rear windows,and the interior trim was discarded, with only insulation around the transmission tunnel. With the exception of the windscreen, all cockpit glass was plexi. A tuned version of Jaguar’s 3.8 litre engine with a wide angle cylinder-head design tested on the D-Type racers was used. Air management became a major problem and, although much sexier looking and certainly faster than a production E-Type, the car was never competitive: the faster it went, the more it wanted to do what its design dictated: take off.

The one and only test bed car was completed in summer of 1962 but was sold a year later to Jaguar racing driver Dick Protheroe who raced it extensively and eventually sold it. Since then it has passed through the hands of several collectors on both sides of the Atlantic and now is believed to reside in the private collection of the current Viscount Cowdray.

Lightweight E-Type (1963-1964)

In some ways, this was an evolution of the Low Drag Coupé. It made extensive use of aluminium alloy in the body panels and other components. However, with at least one exception, it remained an open-top car in the spirit of the D-Type to which this car is a more direct successor than the production E-Type which is more of a GT than a sports car. The cars used a tuned version of the production 3.8 litre Jaguar engine with 300 bhp (224 kW) output rather than the 265 bhp (198 kW) produced by the "ordinary" version. At least one car is known to have been fitted with fuel-injection.

The cars were entered in various races but, unlike the C-Type and D-Type racing cars, they did not win at Le Mans or Sebring.

Motor Sport

Bob Jane won the 1963 Australian GT Championship at the wheel of an E-Type.

The Jaguar E-Type was very successful in SCCA Production sports car racing with Group44 and Bob Tullius taking the B-Production championship with a Series-3 V12 racer in 1975. A few years later, Gran-Turismo Jaguar from Cleveland Ohio campaigned a 4.2 L 6 cylinder FHC racer in SCCA production series and in 1980, won the National Championship in the SCCA C-Production Class defeating a fully funded factory Nissan Z-car team with Paul Newman.

See also

Jaguar XK150 – predecessor to the E-Type
Jaguar XJS – successor to the E-Type
Jaguar XK8 – The E-Type’s current and spiritual successor
Guyson E12 – a rebodied series III built by William Towns

References

^ Loughborough graduate and designer of E Type Jaguar honoured
^ 100 most beautiful cars
• ^ a b cPorter, Philip (2006). Jaguar E-type, the definitive history. p. 443. ISBN 0-85429-580-1.
• ^ a b"’69 Series 2 Jaguar E Types", Autocar, October 24, 1968
• ^ a b c d eThe Complete Official Jaguar "E". Cambridge: Robert Bentley. 1974. p. 12. ISBN 0-8376-0136-3.
• ^ a b c d e f g"Jaguar E-Type Specifications". http://www.web-cars.com/e-type/specifications.php. Retrieved 29 August 2009.
• ^ a b"Buying secondhand E-type Jaguar". Autocar 141 (nbr4042): pages 50–52. 6 April 1974.
^ See Jaguar Clubs of North America concourse information at: [1] and more specifically the actual Series 1½ concourse guide at [2]
^ Ibid.
^ Compare right hand drive VIN numbers given in JCNA concours guide referred to above with production dates for right hand drive cars as reflected in the XKEdata database at [3]
^"The Jaguar E-type". The Motor. March 22, 1961.
• ^ a b cRobson, Graham (2006). A–Z British Cars 1945–1980. Devon, UK: Herridge & Sons. ISBN 0-9541063-9-3.
• ^ a b chttp://www.xkedata.com/stats/. http://www.xkedata.com/stats/. Retrieved 29 August 2009.
^Daily Express Motor Show Review 1975 Cars: Page 24 (Jaguar E V12). October 1974.
^ jalopnik.com/5101872/british-man-cobbles-together-last-ja…

6 top content management systems compared
If you are thinking about implementing a content management system, searching for the best CMS resources, or simply want to learn more about why it helps to have one, this white paper from ARKE will give you the answers.
Read more on Marketing Land

Free Content Management (CMS) PHP Scripts
Looking for a way to allow your users or clients to manage their website using a web interface on their site? The content management systems (CMS) or scripts listed here allow you to install a PHP script onto their web account that makes this possible.
Read more on thefreecountry.com

Camaleon CMS– The Latest RoR Content Management System
‘Content is King’. You have heard this adage so many times that every time this cliché phrase pops in front of your system, all you could do is sigh and roll your eyes. Everyone knows content is king but what if it was said that ‘Content Management …
Read more on railscarma.com

Latest Health Information Technology News

Cancer Targeted Treatments from Space Station Discoveries (NASA, International Space Station, 02/26/14)
health information technology
Image by NASA’s Marshall Space Flight Center
Greetings to all! This image drew me into a great story about cancer research being aided by research aboard the International Space Station. Very interesting stuff. This is the largest image I have right now, but I’ll repost if something larger becomes available…

Photo caption: The oil (blue) contains a visualization marker that is traceable by ultrasound and C-T scans to allow doctors to follow the microcapsules (brown) during site-specific delivery to the tumor. The semipermeable outer skin has the physical ability to time-release the drug slowly.

Story: Invasive and systemic cancer treatment is a necessary evil for many people with the devastating diagnosis. These patients endure therapies with ravaging side effects, including nausea, immune suppression, hair loss and even organ failure, in hopes of eradicating cancerous tissues in the body. If treatments targeted a patient’s cancerous tissues, it could provide clinicians with an alternative to lessen the delivery of toxic levels of chemotherapy or radiation.

Imagine the quality of life from such therapies for patients. Remarkably, research that began in space may soon result in such options here on Earth.

As we recognize February as National Cancer Prevention Month, it is useful to also point out the continuous improvements to cancer treatment through research and discovery. Using the distinctive microgravity environment aboard the International Space Station, a particular series of research investigations is making further advancements in cancer therapy.

A process investigated aboard the space station known as microencapsulation is able to more effectively produce tiny, liquid-filled, biodegradable micro-balloons containing specific combinations of concentrated anti-tumor drugs. Using specialized needles, doctors can deliver these micro-balloons, or microcapsules, to specific treatment sites within a cancer patient. This kind of targeted therapy may soon revolutionize cancer treatment delivery.

Use of the microgravity environment aboard the space station for microencapsulation experiments was a necessity before the ability to develop an Earth-based technology for making these microcapsules. “The technique that we have for making these microcapsules could not be done on the ground, because the different densities of the liquids would layer,” explained Dennis Morrison, Ph.D., retired NASA principal investigator of the Microencapsulation Electrostatic Processing System-II (MEPS-II) study and current vice president and director for microencapsulation research and development at NuVue Therapeutics, Inc. “But in space, since there is not sedimentation due to gravity, everything goes spherical.”

The MEPS operations in microgravity brought together two liquids incapable of mixing on Earth (80 percent water and 20 percent oil) in such a way that spontaneously caused liquid-filled microcapsules to form as spherical, tiny, liquid-filled bubbles surrounded by a thin, semipermeable outer membrane.

In space, surface tension shapes liquids into spheres. Each molecule on a liquid’s surface is pulled with equal tension by its neighbors. The closely integrated molecules form into the smallest possible area, which is a sphere. In effect, the MEPS-II system allowed a combination of liquids in a bubble shape because surface tension forces took over and allowed the fluids to interface rather than sit atop one another.

“We were able to figure out what parameters we needed to control so we could make the same kind of microcapsules on the ground,” said Morrison. “Now, we no longer have to go to space. Space was our teacher, our classroom to figure out how we could make these on Earth.”

Though the MEPS-II technology was produced on the space station in 2002, the ensuing global economic struggles and funding hurdles made it difficult to raise investor capital for new clinical trials of the microcapsules in humans. This gap in the research slowed movement from discovery to an actual product that improves human health.

Read full caption:
www.nasa.gov/mission_pages/station/research/news/microenc…

Image credit: NuVue Therapeutics, Inc.

More about space station research:
www.nasa.gov/mission_pages/station/research/index.html

View more photos like this in the "NASA Earth Images" Flickr photoset:
www.flickr.com/photos/28634332@N05

_____________________________________________
These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin…

Extracting Value From Chaos: The Promise Of Health Information Technology
Expectations for health information technology abound. A paper from the Regenstrief Institute takes a sweeping look at a variety of categories of health IT including electronic medical records; health information exchange; telemedicine; patient portals and …
Read more on www.ecnmag.com

Health Information Technology: An Updated Systematic Review With a Focus on Meaningful Use
From RAND Corporation and Southern California Evidence-based Practice Center, Santa Monica, California; Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts; Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles …
Read more on Annals of Internal Medicine

Health Information Technology (Health IT)
Established within the Department of Health (DOH) in 2007, the Office of Health Information Technology Transformation (OHITT) is charged with coordinating health IT programs and policies across the public and private health care sectors. Its goal is to …
Read more on www.health.ny.gov

Modern Network Architecture and Collaboration Technology

Modern Network Architecture and Collaboration Technology
Collaboration is becoming more and more of a buzz word. Marketers of the cloud and cloud technologies are describing collaboration as a major feature for moving into the cloud. Yet from a technical standpoint what is collaboration? What is the …
Read more on Tech Target

Collaboration Technologies and Organizational Change
It’s not unusual for web workers to get pulled into various efforts to get more people using a particular online collaboration tool. Maybe your company is implementing some collaboration software (wikis, blogs, forums) that employees are expected to use …
Read more on GigaOM

Latest Online Medical Education News

Massive Open Online Courses on Health and Medicine: Review
Conclusions: The review presents evidence to suggest that MOOCs can be used as a way to provide continuous medical education. It also shows the potential of MOOCs as a means of increasing health literacy among the public. Massive open online courses (MOOCs …
Read more on jmir.org

Medical student attitudes toward video games and related new media technologies in medical education
A majority (77%) would use a multiplayer online healthcare simulation on their own time … Friedman published a remarkably farsighted paper that suggested that medical education had become “stuck” in space, time, and content[1]. A sweeping set of cultural …
Read more on bmcmededuc.biomedcentral.com

Carry on doctor — Indegene to offer online medical education
INDEGENE.COM, an online medical resource center backed by European venture incubator Antfactory, is in talks with two American institutes to forge an alliance in the area of continuing medical education (CME) programmes. Indegene’s plans come even as it is …
Read more on The Indian Express

The Role of Information Technology in Improving Health Care

The Role of Information Technology in Improving Health Care
That redundancy adds to the already high costs of obtaining health care. Information technology has the potential to give doctors and providers of medical care a much more complete picture of the patient in front of them, and patients a much easier way to …
Read more on mibluesperspectives.com

Health Information Technology for Economic and Clinical Health (HITECH) Act
Congress on Wednesday will consider legislation to allow physicians working in ambulatory surgical centers to receive the same payment incentives for meaningful use of electronic health records as doctors in other settings. Health IT is moving toward a …
Read more on Healthcare IT News

Health Information Technology: An Updated Systematic Review With a Focus on Meaningful Use
From RAND Corporation and Southern California Evidence-based Practice Center, Santa Monica, California; Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts; Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles …
Read more on Annals of Internal Medicine